
StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Strange: the IoC framework for Unity
Introduction

Acknowledgements

Introduction: the directories

1. Binding

The structure of a binding

2. Extensions

The injection extension

Instantiating injectable instances

Types of injection mapping

Some things you can do with Injectable Classes

Warnings

The reflector extension

The dispatcher extension

The command extension

Mapping commands

The signal extension

Mapping Signals To Commands

Mapping Signals Without Commands

The mediation extension

View

Mediator

http://localhost/strangeioc/index.html

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

The context extension

3. MVCSContext: the big picture

Concepts

Set up your project

A scene is set...

A ContextView begins...

The Context binds...

A Command fires...

A View is mediated...

Another Command fires...

And we’re served...

Mapping Across Contexts

4. Conclusion

Strange: the IoC framework for Unity

Strange attractors create predictable patterns, often in chaotic systems.

Introduction
Strange is a super-lightweight and highly extensible Inversion-of-Control (IoC) framework, written specifically for
C# and Unity. We’ve validated Strange on web, standalone, and iOS and Android. It contains the following
features, most of which are optional:

A core binding framework that pretty much lets you bind one or more of anything to one or more of
anything else.
Dependency Injection

Map as singleton, value or factory (get a new instance each time you need one)
Name injections
Perform constructor or setter injection
Tag your preferred constructor
Tag a method to fire after construction
Inject into MonoBehaviours
Bind polymorphically (bind any or all of your interfaces to a single concrete class)
Reflection binding dramatically reduces overhead of employing reflectivity

Two styles of shared event bus.
Both dispatch events to any point in your application
Both map local event bus for local communication
Both map events to Command classes to separate business logic
The new Signals implementation adds type saftety
NB: Examples in this document use the default EventDispatcher. We've added a section explaining

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Signals, but didn't, frankly, have the patience to re-write the entire guide. Nevertheless, we encourage
the use of Signals as the preferred means of communication.

MonoBehaviour mediation
Facilitate separation of a view from the application using it
Keep Unity-specific code isolated from the rest of the app

Optional MVCS (Model/View/Controller/Service) structure
Multiple contexts

Allow subcomponents (separate Scenes) to function on their own, or in the context of larger apps.
Allow communication between contexts.

Don’t see what you need? The core binding framework is simple to extend. Build new Binders like:
A different type of dispatcher
An entity framework
A multi-loader

In addition to organizing your project into a sensible structure, Strange offers the following benefits:

Designed to play well with Unity3D. Also designed to play well without it.
Separate UnityEngine code from the rest of your app.

Improves portability
Improves unit testability

A common event bus makes information flow easy and highly decoupled. (Note: Unity’s SendMessage
method does this, of course, but it’s dangerous as all get-out. I may write a whole article on just this topic at
some point.)
The extensible binder really is amazing (a friend used to tell me “it’s good to like your own cookin’!”). The
number of things you can accomplish with the tiny core framework would justify Strange all on its own.
Multiple contexts allow you to “bootstrap” subcomponents so they operate fine either on their own or as an
integrated part. This can hugely speed up your development process and allow developers to work in
isolation, then integrate in later stages of development.

Acknowledgements
It is hard to adequately credit the creators of the open source Actionscript framework Robotlegs for their influence
on the creation of StrangeIoC. While Strange is not a port of Robotlegs, the ensigns of that library are copiously
reflected throughout this one. For their great service to my professional development, I offer that team my
sincerest thanks. And a donut. Seriously, if you’re ever in town, let me buy you a donut.

Kudos to Will Corwin for contributing the awesome Signals implementation (and implicit bindings, now on the dev
branch).

I also need to thank and congratulate the folks at ThirdMotion who inexplicably gave me time to build Strange and
license to open source it.

Glossary
This document uses lots of words which have lots of meaning to engineers...but little to non-engineers...and
sometimes not that much to engineers who come from different backgrounds. If you run across a word you don't
understand never fear! Check out this glossary to see if we've explained it there.

Introduction: the directories
The downloaded project contains everything you need to get going, including a few example scenes. To find the
code, which is most of what we’re going to discuss, look inside StrangeIoC > scripts > strange . You’ll find

http://www.robotlegs.org/
http://www.thirdmotion.com/
http://localhost/strangeioc/glossary.html

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

three subdirectories (if you’re looking from inside Unity, you’ll only see two).

1. framework - The handful of classes that make Strange what it is
2. extensions - Various libraries that build upon the core framework to provide useful functionality
3. examples - Code for the example projects (examples moved to StrangeIoC > examples).
4. .tests - Contains unit tests to validate that the framework and extensions work properly

1. Binding
The core of Strange is a very simple package for binding. This means, essentially, that we can bind (connect) one
or more of anything to one or more of anything else. Tie an interface to a class that implements that interface. Or
tie an event to a handler. Or tie two classes such that when one comes into being, the other one is automatically
created. Why would we do this? So glad you asked! It turns out that much of what we do when programming
comes down to binding. If you’ve ever dispatched an event (or a SendMessage in Unity), if you’ve ever indicated
that one class uses another class, if you’ve ever written so much as an “if...else” statement, you’ve engaged in
some form of binding. That is, you’ve tied something to something else.

But binding things directly is problematic, because it results in code that’s hard to change (rigid) and easy to
break (brittle). For example, I’m sure you’ve programmed something in which you’ve expressed the idea “this is a
Thing. And a Thing contains these other SubThings.” For example, a Spaceship class, which contains both a Gun
and a keyboard control. You write this — and all’s well-and-good, until your boss says he wants mouse control
instead of keyboard. So now you go back and re-write the Spaceship class. But wait a second. Your Spaceship
class didn’t really change any. It’s the control that changed. So why are you re-writing Spaceship?

Instead of writing the controls right into the Spaceship class, you could create a MouseControl Class and use that.
But if Spaceship includes a reference to the MouseControl class, you’re still directly binding. In order to change
from KeyboardControl to MouseControl (and back again, when your boss changes his mind), you have to change
the reference inside Spaceship.

Strange’s binders make it possible to create indirect bindings that relieve your code’s reliance on other parts of
the program. This is a fundamental (but often misunderstood) tenet of Object-Oriented Programming. Your code
isn’t really Object-Oriented until the objects themselves can function without reliance on other concrete classes.
Using binders can give your code lots more freedom and flexibility.

The structure of a binding

Let’s look quickly at the structure of a single binding. This structure is repeated throughout Strange and all its
extensions, so you’ll want to understand the pattern.

A Strange binding is made up of two required parts and one optional part. The required parts are a key and a
value. The key triggers the value; thus an event can be the key that triggers a callback. Or the instantiation of one
class can be the key that leads to the instantiation of another class. The optional part is a name. Under some
circumstances, it is useful to qualify two bindings with identical keys. Under these circumstances, the name serves
as a discriminator.

All three of these parts can be structured in one of two ways, either as a value or as a type using C# generics.
Using generics, for example we might say:

Bind<Spaceship>().To<Liberator>();

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

The “Bind” is the key, the “To” is the value. We might express the binding as a value:

A binder fed with the input “MeaningOfLife” would react with the output 42.

There are times when these two styles get mixed:

When this binder is fed with the Type Spaceship, it outputs the string value “Enterprise”.

When naming is called for, the binding looks much the same:

Finally, note that the following things are all the same:

The differences are nothing more than syntactical sugar.

There are countless forms of binding, and Strange gives you access to a few really useful ones. What’s more, the
binding framework is so simple that you can extend it yourself to create new binder components. We go into
each of the included binders in the following section.

2. Extensions
You may have heard that Strange is a Dependency Injection framework. I'm a little uncomfortable with that
description. Sure, Strange offers DI and it's a great use, but the core of the framework — as I've said — is binding.
The installation comes with several useful extensions of the core Binder, which I'm going to detail in this section.
Remember, though, that nothing stops you from extending the Binder to create your own custom
implementations.

Note: in the sections that follow, I regularly refer to the MVCSContext version of Strange. MVCSContext is the
recommended version, which includes all the extensions mentioned below. It’s the easiest way to get started with
Strange.

Bind(“MeaningOfLife”).To(42);

Bind<Spaceship>().To(“Enterprise”);

Bind<IComputer>().To<SuperComputer>().ToName(“DeepThought”);

Bind<IDrive>().To<WarpDrive>();

Bind(typeof(IDrive)).To(typeof(WarpDrive));

IBinding binding = Bind<IDrive>();
binding.To<WarpDrive>();

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

The injection extension

The Binder extension most closely related to Inversion-of-Control (IoC) is the injector package. We hinted at
injection a bit in the prior section, now let's get into the particulars.

You may be familiar with the idea of writing Interfaces. An Interface contains no implementation itself, it just
defines what a class’s inputs and outputs look like. In C# this looks like:

And the class that implements the interface looks like:

By programming to interfaces, we relieve some of the Thing-Contains-SubThings problem. Our Spaceship no
longer needs to contain a keyboard listener, it simply needs a method to react to input. It no longer needs a Gun,
just something (what we call a 'concrete' class) that satisfies the IWeapon interface. That's a big step forward.

But here's a question for you: who tells the Spaceship what type of IWeapon to use? Well, let's say the Spaceship
will be in a GameField, so maybe the GameField could tell the Spaceship what weapon it would use? But that
would mean that the GameField would need to know about the concrete class. All that does is shift the location of
the dependency, so that's no good.

The GameField could have an interface that pushed all of its dependencies (including everything the Spaceship
needs), and so on, right up to the top of the application.

TopOfApp > GameModule > GameField > Spaceship

Phaser --->

That would remove the concrete classes, but it would also mean a long chain of dependency pushes through the
entire class hierarchy. That's brittle, meaning that a change anywhere could break lots of things and be very hard
to locate. It also means that the GameField (and any other classes in the chain) needs to know about IWeapon.

interface ISpaceship
{
 void input(float angle, float velocity);
 IWeapon weapon{get;set;}
}

class Spaceship : ISpaceship
{
 public void input(float angle, float velocity)
 {
 //do stuff here
 }

 public IWeapon weapon{get;set;}
}

http://en.wikipedia.org/wiki/Interface_%28computing%29

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

But GameField probably doesn't care about IWeapon, so why create a dependency where none is needed?

How about a Factory pattern? If I create a SpaceshipFactory, a class that creates Spaceships and simply follows the
IFactory interface, then the GameField needs only that one dependency. Now we're getting somewhere.

GameField ---------> SpaceshipFactory : IFactory

ISpaceship <--------- (creates concrete Spaceship)

No need to know about IWeapon, though I need to know about ISpaceship and now I need IFactory too. Hmmm,
and probably IEnemy, come to think of it. And, yeah, I need to wire up all those factories and figure out how
they’re being provided. So not bad (and this is as far as many programmers get). But you can see that even this
well-regarded pattern has significant weaknesses.

So consider a completely different model, one where no class ever has to fulfill another class’s dependencies
explicitly. This model is called Dependency Injection (DI). In DI, a class requests what it needs (ideally in the form
of an Interface) and a class called an Injector provides that need. Most traditionally, this is accomplished by means
of a mechanism called Reflection.

With DI, if GameField needs an ISpaceship, it sets up a dependency that looks like this:

ISpaceship <--------- (as if by magic)

There’s no reliance on dependency chains or factories. There are no dependencies except the ones your class
actually needs. And you never need to make the dependency explicit (though of course you can choose to do so).

So how’s the “magic” work?

C#’s System.Reflection package allows a class to be deconstructed at runtime and analyzed. It’s worth noting that
this isn’t the fastest process, so we use it sparingly in Strange, and so should you. When reflecting a class, we can
examine its methods and properties. We can see what its construction methods look like and what parameters
they require. By examining all these clues we can deduce what a class’s dependencies look like, then provide
them.

The code for setting up a dependency in Strange usually looks like this:

And how does Strange know what concrete class to provide for IInterface? You tell it by binding dependencies in
a central file called the Context. As I’ve mentioned, the “standard” Context is MVCSContext, which is a class you
can extend to get all of Strange’s wacky goodness. When extending MVCSContext, you can create your bindings
right in the extended class like so:

[Inject]
public IInterface myInstance {get;set;}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Now, whenever a class requires an IWeapon, the concrete class PhaserGun is provided. If you decide to change
PhaserGun to SquirtCannon, you make no changes whatsoever to Spaceship or to any other class. You simple
remap:

Hey presto! The Spaceship now uses a SquirtCannon. All this from simply a one-word acknowledgement that this
is a dependency to be injected:

It might be of interest to note that this [Inject] attribute tag is entirely innocuous if you’re not using DI. So you can
add it to your classes and then, if you someday decide this DI lark is all some terrible mistake (which it most
emphatically is not), the tags in your code will make no difference to you whatsoever. Without that [Inject] tag,
'weapon' is now just a regular ol' getter/setter.

Instantiating injectable instances
Now there is one big “take note” in all this. If you want all this injectable goodness, you need to do two things:

1. Bind classes in the Context, which we’ve discussed, and
2. Instantiate instances from the InjectionBinder

The second one feels unusual at first, but it’s really very straightforward. It’s just like a factory, only instead of oen
factory for every Type, we just go to the Injector for everything. Also, most of the time the InjectionBinder is
entirely invisible. Most of us are used to constructing through constructors...

...so this takes a little retraining. Let me re-emphasize, most of the time you’ll not need to use this method, since
your instances will come via injection. You only need what I’m about to tell you in those cases where you’d
otherwise be inclined to write new MyClass().

injectionBinder.Bind<IWeapon>().To<PhaserGun>();

injectionBinder.Bind<IWeapon>().To<SquirtCannon>();

class Spaceship : ISpaceship
{
 public void input(float angle, float velocity)
 {
 //do stuff here
 }

 [Inject] //<----- The magic word!
 public IWeapon weapon{get;set;}
}

IClass myInstance = new MyClass();

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

As you can see, we’re still freeing ourselves from the tyranny of concrete classes. And the instance you get will
come pre-injected with all its dependencies. It’s just a little different from what you’re used to.

Types of injection mapping
So we can bind injections in lots of ways, and they’re all useful. One of the most useful bindings is ToSingleton. It
looks like this:

A Singleton is a design pattern you probably know. It indicates that there will only ever be one of something in an
app. If you use this pattern, you might have seen a line like this:

There are some problems with Singletons, most notably that sometimes they turn out to not be so singular. In the
above line, for example, it may turn out that there’s only one ISocialService (Twitter) one day, but due to a design
change, there are three (Twitter, Facebook and G+) tomorrow. The writer of TwitterService.Get() is not only
concretely relying on TwitterService, she’s explicitly stating that she knows it’s a Singleton. If that changes, she’s
got refactoring to do.

Compare this to the Singleton “Get” in Strange:

Oh wait, that can’t be right. That looks exactly the same as the injection tag we saw before. Yep. That’s the point.
Your class doesn’t need a TwitterService, it needs an ISocialService. And it certainly doesn’t care whether that
service is a Singleton or not.

Because Strange’s dependency is only a mapping, it becomes a trivial matter in Strange to re-map our Singleton
to a different service. Not only doesn’t the client have any idea which ISocialService it is, it has no idea whether
the service is a Singleton or anything else. That’s as it should be. Once you start using DI, you will never write a
Singleton again. You will map Singletons.

But in my example we’re not just changing services, we’re adding multiple services. So how do we tell them apart?
This brings us to the second type of mapping: named injections.

IClass myInstance = injectionBinder.GetInstance<IClass>() as IClass;

injectionBinder.Bind<ISocialService>().To<TwitterService>().ToSingleton();

ISocialService socialService = TwitterService.Get();

[Inject]
public ISocialService {get;set;}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Named injections are a tiny bit different from other injections. The name allows the injector to discriminate
between different classes that satisfy the same Interface. In this way, you can inject ISocialService in different
places and get the specific version you want. The client class needs the matching name added to the [Inject]
tag:

Names can be anything, but in practice an Enum is usually a good choice. Note that this name-tagging in your
classes creates a dependency of sorts (we are, after all, stating that the client expects something more than just a
generic interface), so we suggest using this feature sparingly.

Sometimes you know exactly what you want to inject. Perhaps you’ve loaded a config file and you need that
available in different areas around the application. This is accomplished by value mapping.

In the example, myConfig would be the result of loading some configuration file. Now wherever you need an
IConfig, you’ll receive the value myConfig. Again, note that the client class has no idea whatsoever whether this is
a Singleton, a value, or whatever. Its job is to use IConfig, not to wonder where it comes from.

You might also come across a situation where you have no control over a class. Perhaps it comes from a package
you’ve downloaded and has already been written as a Singleton. You can still accomplish mapping with ToValue.
Just call the Singleton's Get() (perhaps in the Context) and map the result:

It would of course be better to bind it to an Interface if TouchCommander adheres to one. Or (and I do this a lot),
you can create an interface and wrap TouchCommander inside a facade. After all, you might someday decide to
change from TouchCommander to some other touch handling system. If you did that and had TouchCommander

injectionBinder.Bind<ISocialService>()
 .To<TwitterService>().ToSingleton()
 .ToName(ServiceTypes.PRIMARY);

injectionBinder.Bind<ISocialService>()
 .To<TwitterService>().ToSingleton()
 .ToName(ServiceTypes.SECONDARY);

injectionBinder.Bind<ISocialService>()
 .To<TwitterService>().ToSingleton()
 .ToName(ServiceTypes.TERTIARY);

[Inject (ServiceTypes.TERTIARY)] //We mapped TwitterService to TERTIARY
public ISocialService socialService{get;set;}

Configuration myConfig = loadConfiguration();
injectionBinder.Bind<IConfig>().ToValue(myConfig);

TouchCommander instance = TouchCommander.Get();
injectionBinder.Bind<TouchCommander>().ToValue(instance);

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

references throughout your app, you'd again be faced with a lot of refactoring. A facade class that adheres to an
interface of your choosing saves you from this problem and keeps concrete references to TouchCommander
tightly controlled.

Now what about if you need a new instance every time you ask for one? We accomplish this with what’s called a
factory mapping:

This is basically the same as the ToSingleton mapping, just without the instruction ToSingleton . Whenever this
injection is satisfied, you’ll get a new IEnemy, in this case mapped to the concrete class Borg. Note that we can
combine these mappings so that, for example, a factory mapping can also be named:

You can also bind multiple times, allowing a binding to be polymorphous, which is a fancy-pants way of saying
that a class can have more than one interface:

This would allow you to get an enemy regardless whether the [Inject] tag was marked IHittable or
IUpdateable. Note that while multiple 'Bind's make sense, in this context multiple 'To's do not. You can map to
any of multiple Interfaces, but injection only makes sense if the result is a single concrete type or value.

Some things you can do with Injectable Classes
I’ve already mentioned how you declare injection setters in your classes. To recap, to make a property injectable,
use the [Inject] attribute:

Or, to make it a named injection:

or, to mark it with a marker class:

injectionBinder.Bind<IEnemy>().To<Borg>();

injectionBinder.Bind<IEnemy>().To<Borg>().ToName(EnemyType.ADVANCED);
injectionBinder.Bind<IEnemy>().To<Romulan>().ToName(EnemyType.BASIC);

injectionBinder.Bind<IHittable>().Bind<IUpdateable>().To<Romulan>();

[Inject]
public ICompensator compensator{get;set;}

[Inject(CompensatorTypes.HEISENBERG)]
public ICompensator compensator{get;set;}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

These are all examples of setter injection, which is one of two types of injection available in Strange. The other
type of injection is constructor injection, in which your injections are provided as part of the actual call to the
class’s constructor. There are two notable disadvantage to setter injection. First, injecting requires making the
injectable properties public. This may or may not be what you would have chosen were you not injecting. With
constructor injection you can keep the private values private. Second, you have to be careful in your actual
constructors if you’re using setter injection. By definition, construction has to occur before setters are set. Thus
any injected properties will be unavailable until after construction. Because constructor injection provides the
dependencies as constructor parameters, all values are available immediately.

Type of
Injection

Advantages Disadvantages

Setter
1. Allows named injection
2. Less code
3. More flexible

1. Injected dependencies not available in
constructors

2. Some properties made public that should
be private

Constructor
1. Private properties remain private
2. Injected dependencies available in

constructors

3. Does not allow named injection
4. More code
5. Less flexible

In addition to [Inject] there are a couple of other attributes you should know about.

If your class has multiple constructors, the [Construct] tag is a way to mark which one you want Strange to use.
If no constructor is marked with [Construct] , Strange chooses the constructor with the fewest parameters. Of
course, if you have only one constructor, you needn’t use the [Construct] attribute at all.

[PostConstruct] is a useful attribute if you choose to go with setter injection. Any method marked with
[PostConstruct] is called immediately following injection. This allows you to work with any injections as soon as

they’re ready, safe in the knowledge that the dependencies won’t return a null pointer.

[Inject(typeof(HeisenbergMarker))]
public ICompensator compensator{get;set;}

public Spaceship()
{
 //This constructor gets called by default...
}

[Construct]
public Spaceship(IWeapon weapon)
{
 //...but this one is marked, so Strange will call it instead
}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

You can have as many [PostConstruct] methods as you like, and they can be ordered (as of v0.7).

Should you use setter injection or constructor injection? Shaun Smith, one of the authors of Robotlegs, has an
excellent post on the subject here.

Warnings
There are a couple of potential gotchas to beware of with injection.

1. Be careful of dependency loops. If classes inject each other, this can lead to a never-ending dependency loop.
Strange armors against this to avoid bringing down your app (and will throw an InjectionException to alert you),
but you should avoid doing it in the first place.

2. Injection employs reflection, which, as I’ve noted, is slow. Strange uses ReflectionBinder to minimize this
problem (and delivers very formidable results), but consider carefully whether this method is appropriate for
performance-sensitive code, such as your main game loop.

3. It might be obvious to say, but remember that if you inject something, you have to map it. Creating
dependencies then forgetting to fulfill them results in null pointer errors. Fortunately, Strange looks for these and
does its level best to help you figure out what you forgot to map and who needs it.

The reflector extension

Honestly, you don’t need to know too much about this extension, except that it’s there and that it handles
Reflection during injection. Reflection is the process of analyzing classes at runtime. Strange uses this process to
determine what to inject.

(It’s probably worth noting that the reflector extension was written late in development as an optimization for the
slow process of Reflection. I felt that Reflection performance could be improved if I cached the result of reflecting,
so I wrote ReflectionBinder to do just that. Before the reflector, every class went through Reflection every time

[PostConstruct]
public void PostConstruct()
{
 //Do stuff you’d normally do in a constructor
}

[PostConstruct(1)]
public void PostConstructOne()
{
 //This fires first
}

[PostConstruct(2)]
public void PostConstructTwo()
{
 //This fires second
}

http://shaun.boyblack.co.za/blog/2009/05/01/constructor-injection-vs-setter-injection/

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

time it was instantiated. Now it goes through that process just once per class. The result was an estimated 5x
improvement over 1000 moderately complex instances. It’s a great example of extending the core Binder to solve
a problem.)

One feature that might be worth your notice is the ability to “pre-reflect” classes. That is, you can trigger the
expensive process of reflection at a moment when processing requirements are minimal (say, while the player is
looking at some static UI). This is accessed via the injectionBinder.

The first example demonstrates how to reflect a list of classes:

The second example simply reflects everything already mapped to the injectionBinder;

The dispatcher extension

NB: EventDispatcher is the original and default dispatch system for Strange. There is now a Signals extension
which adds type-safety to your dispatches. We recommend the new system, but plan to support both for the
foreseeable future. Which package you use is up to you.

In principle, a dispatcher is any class that functions as the 'subject' in a classic Observer Pattern. That is, it allows
clients to listen to it, and then tells those clients whenever certain events occur. In Strange, we've implemented the
EventDispatcher, which binds a trigger (which can be anything, but a string or Enum usually does the trick) to
single-parameter or no-parameter methods which will react when that trigger fires. The resulting parameter (if
required) will be in the form of an IEvent, a simple value object which contains any data relevant to that event
(while you can write your own event that satisfies the IEvent interface, the canonical Strange event is called
TmEvent).

If you're using the MVCSContext version of Strange, there's a global EventDispatcher (dubbed ‘contextDispatcher’)
automatically injected at various points around the app and you can use that to send messages throughout your
app. There's also a crossContextDispatcher for communicating between Contexts.

There are two basic things you can do with EventDipatcher: dispatch events and listen to them. That said, there
are quite a few ways to configure just how those events are sent and received. Let’s start with the simplest form
of listening.

List<Type> list = new List<Type> ();
list.Add (typeof(Borg));
list.Add (typeof(DeathStar));
list.Add (typeof(Galactus));
list.Add (typeof(Berserker));
//count should equal 4, verifying that all four classes were reflected.
int count = injectionBinder.Reflect (list);

injectionBinder.ReflectAll();

dispatcher.AddListener("FIRE_MISSILE", onMissileFire);

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

This will listen to the dispatcher until an event called "FIRE_MISSILE" is dispatched, at which point a method called
onMissileFire will be triggered.

Let me suggest that while this is simple, it's not very good. Strings make code brittle, that is, they make code that
breaks easily. A string in one place can change without the rest of the code knowing, and that's a recipe for
disaster. A better form of the same thing would be a const...perhaps an Enum:

You can remove the listener like so:

Under the hood, AddListener and RemoveListener are just synonyms for Bind and Unbind. The
AddListener/RemoveListener pair is just syntactic sugar to provide an interface with which many people are
familiar. There’s also a convenience method for updating the listener based on a boolean:

The method called can either have one argument or none, depending on whether you care about any event
payload:

You’ll also want to be able to dispatch events. This is how you say "Look over here! I'm doing something cool!"
There are a few ways to do this. Again, starting simple:

This form of dispatch will generate a new TmEvent and call any listeners, but since you’ve provided no data, the
data field of the TmEvent will of course be null. You can also call Dispatch and provide data:

dispatcher.AddListener(AttackEvent.FIRE_MISSILE, onMissileFire);

dispatcher.RemoveListener(AttackEvent.FIRE_MISSILE, onMissileFire);

dispatcher.UpdateListener(true, AttackEvent.FIRE_MISSILE, onMissileFire);

private void onMissileFire()
{
 //this works...
}

private void onMissileFire(IEvent evt)
{
 //...and so does this.
 Vector3 direction = evt.data as Vector3;
}

dispatcher.Dispatch(AttackEvent.FIRE_MISSILE);

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Now the TmEvent created will have Vector3 data that matches orientation.

Finally, you can actually create the TmEvent explicitly and dispatch that:

Which version of Dispatch you use is largely a stylistic choice. Every version looks the same to a listener.

The command extension

In addition to binding events to methods, you can bind them to Commands. Commands are the Controllers in the
classic Model-View-Controller-Service structure. In the MVCSContext version of Strange, the CommandBinder
listens to every dispatch from the dispatcher (of course you can change this if you want in your own Context).
Signals, described below, can also be bound to Commands. Whenever an event or Signal fires, the
CommandBinder determines whether that event or Signal is bound to one or more Commands. If
CommandBinder finds a binding, a new Command instance is instantiated. The Command is injected, executed,
then disposed of. Let’s start by looking at a simple Command:

There are several things to note about this simple example. First, observe that we’re using the
strange.extensions.command.impl namespace since this Command extends EventCommand. You don’t have to

extend EventCommand or even Command, but your commands do have to adhere to the ICommand interface.
Second, note that you can inject into commands. This is really useful, since it means that any model or service
can be accessed and interacted with. Finally notice that by extending EventCommand we automatically have
access to dispatcher (the EventDispatcher injected everywhere within a Context), so any listener to
contextDispatcher, anywhere in the app, can hear that GameEvent.STARTED we just fired. Since this is a
synchronous Command, we simply fire and forget. As soon as Execute() completes, the Command will get

Vector3 orientation = gameObject.transform.localRotation.eulerAngles;
dispatcher.Dispatch(AttackEvent.FIRE_MISSILE, orientation);

TmEvent evt = new TmEvent(AttackEvent.FIRE_MISSILE, dispatcher, this.orientation);
dispatcher.Dispatch(evt);

using strange.extensions.command.impl;
using com.example.spacebattle.utils;

namespace com.example.spacebattle.controller
{
 class StartGameCommand : EventCommand
 {
 [Inject]
 public ITimer gameTimer{get;set;}

 override public void Execute()
 {
 gameTimer.start();
 dispatcher.dispatch(GameEvent.STARTED);
 }
 }
}

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

cleaned up.

But what about asynchronous Commands, like calling on a web service? We can handle these with a really simple
pair of methods called Retain() and Release() . Look at this:

You can probably understand pretty much everything happening here. We pass off the SendScore request to the
gameServer, which chews on it for awhile. The Command will hang around while the server does what it needs to
do. By calling Retain() at the top of the Execute method, we keep the command in memory. Whenever you call
Retain() , it is critically important that you call Release() , however the callback turns out. Failure to do so will

result in a memory leak.

Mapping commands
Although technically we can map Commands to events almost anywhere, we typically do so in the Context. Doing
so makes it easy to locate when you (or anyone else) needs to find what’s mapped to what. Command mapping

using strange.extensions.command.impl;
using com.example.spacebattle.service;

namespace com.example.spacebattle.controller
{
 class PostScoreCommand : EventCommand
 {
 [Inject]
 IServer gameServer{get;set;}

 override public void Execute()
 {
 Retain();
 int score = (int)evt.data;
 gameServer.dispatcher.AddListener(ServerEvent.SUCCESS, onSuccess);
 gameServer.dispatcher.AddListener(ServerEvent.FAILURE, onFailure);
 gameServer.send(score);
 }

 private void onSuccess()
 {
 gameServer.dispatcher.RemoveListener(ServerEvent.SUCCESS, onSuccess);
 gameServer.dispatcher.RemoveListener(ServerEvent.FAILURE, onFailure);
 //...do something to report success...
 Release();
 }

 private void onFailure(object payload)
 {
 gameServer.dispatcher.RemoveListener(ServerEvent.SUCCESS, onSuccess);
 gameServer.dispatcher.RemoveListener(
 ServerEvent.FAILURE, onFailure);
 //...do something to report failure...
 Release();
 }
 }
}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

looks a lot like injection mapping:

You can bind multiple Commands to a single event if you like:

And you can unbind at any time to remove a binding:

There’s also a nice “one-off” directive for those times where you only want a Command to fire just the next time
an event occurs.

By declaring Once , you ensure that the binding will be destroyed the next time the Command fires.

Sequences are a group of commands fired in order. The commands fire one-by-one either until the sequence
reaches the end, or one of the commands fails. A command can call Fail() at any point, which breaks the
sequence. This can be useful for setting up a chain of dependent events, for building ordered animations, or for
setting a guard to determine whether or not a Command should really execute.

Mapping a sequence simply requires the addition of the InSequence() instruction:

The idea behind this sequence is that a hit might indicate that a level has been cleared. So we run the
CheckLevelClearedCommand . If it passes, we run EndLevelCommand . If that Command indicates we’ve reached the

final level, run the GameOverCommand . Commands in a sequence execute successively, so at any point along the
way, a Command can simply call Fail() to stop the execution flow.

As with regular Commands, commands in a sequence may execute asynchronously. If they do (and presuming
Fail() isn’t called), the subsequent Command will be fired as soon as Release() is invoked.

The signal extension

commandBinder.Bind(ServerEvent.POST_SCORE).To<PostScoreCommand>();

commandBinder.Bind(GameEvent.HIT).To<DestroyEnemyCommand>().To<UpdateScoreCommand>();

commandBinder.Unbind(ServerEvent.POST_SCORE);

commandBinder.Bind(GameEvent.HIT).To<DestroyEnemyCommand>().Once();

commandBinder.Bind(GameEvent.HIT).InSequence()
 .To<CheckLevelClearedCommand>()
 .To<EndLevelCommand>()
 .To<GameOverCommand>();

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Signals are a dispatch mechanism — an alternative to EventDispatcher — introduced with Strange v.0.6.0.
Whereas EventDispatcher creates and dispatches IEvent objects with a single data property, Signals hook to
callbacks, passing 0-4 strongly-typed arguments. This has two major advantages over the EventDispatcher. First,
Signal dispatch results in no new object creation, and therefore no need to GC a lot of created instances. Second,
and far more importantly, Signal dispatches are type-safe and will break at compile-time if the Signals and their
mapped callbacks don't match.

Another important distinction is that while there is a single 'global' EventDispatcher for each context (and another
'even-more-global' CrossContextDispatcher) firing off Event triggers, Signals uses a different model. Each 'Event' is
the result of an individual Signal tasked to some duty. So while EventDispatcher is monolithic, there may be any
number of Signals. Let's show some examples.

Here are two Signals, each with one parameter:

Notice how the dispatch type of each Signal has been baked right into the instantiation. Let's build this out with
some callbacks:

What's worth noticing here is that once the Signal bakes in its type, that type is a compile-time requirement of
any listener to that Signal. This means the app simply won't compile if, for example, you accidentally do this:

Signal<int> signalDispatchesInt = new Signal<int>();
Signal<string> signalDispatchesString = new Signal<string>();

Signal<int> signalDispatchesInt = new Signal<int>();
Signal<string> signalDispatchesString = new Signal<string>();

signalDispatchesInt.AddListener(callbackInt); //Add a callback with an int parameter
signalDispatchesString.AddListener(callbackString); //Add a callback with a string paramete
r

signalDispatchesInt.Dispatch(42); //dispatch an int
signalDispatchesString.Dispatch("Ender Wiggin"); //dispatch a string

void callbackInt(int value)
{
 //Do something with this int
}

void callback(string value)
{
 //Do something with this string
}

Signal<int> signalDispatchesInt = new Signal<int>();
Signal<string> signalDispatchesString = new Signal<string>();

signalDispatchesInt.AddListener(callbackString); //Oops! I attached the wrong callback to my Signa

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

This makes screwing up your listeners pretty darned difficult.

The parameters of a Signal are type-safe and down-castable. This means that anything assignable from the
parameter's Type is a legal mapping.

You can write Signals with 0-4 parameters. Signals use the Action Class as the underlying mechanism for type
safety. Unity's C# implementation allows a maximum of four parameters to an Action, so that's as far as we can
take you. If you require more than four parameters, consider creating a value object and sending that instead.

You can write your own Signal subclasses, of course, instead of declaring them like the inline examples above. This
is especially useful in Strange, where you probably want to have some handy, human-readable names for
mapping Signals within and between Contexts. Here's an example of a Signal subclass:

l!
signalDispatchesString.AddListener(callbackInt); //Oops! I did it again! (Am I klutzy or what?!)

//You can do this...
Signal<SuperClass> signal = new Signal<SuperClass>();
signal.Dispatch(instanceOfASubclass);

//...but never this
Signal<SubClass> signal = new Signal<SubClass>();
signal.Dispatch(instanceOfASuperclass);

//works
Signal signal0 = new Signal();

//works
Signal<SomeValueObject> signal1 = new Signal<SomeValueObject>();

//works
Signal<int, string> signal2 = new Signal<int, string>();

//works
Signal<int, int, int> signal3 = new Signal<int, int, int>();

//works
Signal<SomeValueObject, int, string, MonoBehaviour> signal4 = new Signal<SomeValueObject, int, st
ring, MonoBehaviour>();

//FAILS!!!! Too many params.
Signal<int, string, float, Vector2, Rect> signal5 = new Signal<int, string, float, Vector2, Rect>
();

using System;
 using UnityEngine;
 using strange.extensions.signal.impl;

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Mapping Signals to Commands
If you want your Context to be able to bind Signals to Commands (a very good idea) you need to make one small
plumbing change. If you'd rather get the full Signals experience, then add this to your Context:

Doing this informs Strange that we're doing away with the default CommandBinder and replacing it with the
SignalCommandBinder. Thus Signals, rather than Events, will trigger Commands. Note that Strange currently
supports eitherEvents or Signals mapped to Commands, but not both.

Having done this, Signals can now be mapped to Commands much as Events can. The basic syntax is:

Note that it's still commandBinder . We simply unmapped the one that worked with EventDispatcher and hooked it
up to a new one that works with Signals. Of course the full range of Command-mapping behavior is supported,
including multiple Commands, sequences and mapping Once() .

Mapping a Signal to a Command automatically creates an injection mapping which you can retrieve with the
[Inject] tag, like so:

Use this injection wherever necessary (always remembering to apply some common sense), including in
Commands or Mediators.

To clarify how Signal/Command mapping works, let's briefly go through an example by mapping the
ShipDestroyedSignal above to a Command. We'll start in the Context by binding the Signal:

 namespace mynamespace
 {
 //We're typing this Signal's payloads to MonoBehaviour and int
 public class ShipDestroyedSignal : Signal<MonoBehaviour, int>
 {
 }
 }

protected override void addCoreComponents()
{
 base.addCoreComponents();
 injectionBinder.Unbind<ICommandBinder>();
 injectionBinder.Bind<ICommandBinder>().To<SignalCommandBinder>().ToSingleton();
}

commandBinder.Bind<SomeSignal>().To<SomeCommand>();

[Inject]
public ShipDestroyedSignal shipDestroyedSignal{get; set;}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

In a ShipMediator, we Inject the signal, then Dispatch it:

Dispatching a Signal mapped via the SignalCommandBinder results in the instantiation of a
ShipDestroyedCommand:

As you can see, the methodology for mapping Signals to Commands is very similar to the methodology used with
Events.

Two important caveats: first, while Signals support multiple parameters of the same Type, injections do not. It is
therefore not possible for a Signal with two parameters of the same Type to be mapped to a Command.

commandBinder.Bind<ShipDestroyedSignal>().To<ShipDestroyedCommand>();

[Inject]
public ShipDestroyedSignal shipDestroyedSignal{get; set;}

private int basePointValue; //imagining that the Mediator holds a value for this ship

//Something happened that resulted in destruction
private void OnShipDestroyed()
{
 shipDestroyedSignal.Dispatch(view, basePointValue);
}

using System;
using strange.extensions.command.impl;
using UnityEngine;

namespace mynamespace
{
 //Note how we extend Command, not EventCommand
 public class ShipDestroyedCommand : Command
 {
 [Inject]
 public MonoBehaviour view{ get; set;}

 [Inject]
 public int basePointValue{ get; set;}

 public override void Execute ()
 {
 //Do unspeakable things to the destroyed ship
 }
 }
}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Once again, this you can work around this limitation by mapping ValueObjects instead.

The second caveat: Strange has a handy-dandy, built-in START event for kicking things off. Unbinding the
EventDispatcher turns this off. It is therefore the recommended practice to override your Context's Launch
method with a custom StartSignal, like so:

Mapping Signals without Commands
As mentioned above, mapping a Signal to a Command automatically creates a mapping which you can retrieve by
injecting elsewhere, but what if you want to Inject a Signal without binding to a Command? In this case, simply
map it using the injectionBinder, just like any other injected class:

The mediation extension

The MediationContext is the only part of Strange written exclusively for use with Unity3D. This is because
mediation is all about carefully controlling how your views (GameObjects) interface with the rest of your app.
Views are by nature highly volatile during development, and it's advisable to constrain that natural chaos to within
the view classes themseves. For this reason, we suggest that your view consist of at least two distinct
MonoBehaviours: View and Mediator.

View
The View class represents the 'V' in our MVCS structure. A View is a MonoBehaviour that you extend to write the
behavior that controls the visual (and audible) input and output that a user sees. This class can be attached in the
Unity3D IDE to the relevant GameObject. If it has public components, these can be tweaked right in the IDE as
normal. Want a green button? Wire it up in the View. Want the green button to have a number on it? Wire that
up in the View. Want to inject a model or service? WAIT! Don’t do that! Why?

While your Views are injectable, it’s almost always bad practice to tie your Views directly to models and services.
As we’ve said, your View code is apt to get messy and it’s worth insulating your other classes from that mess. In
the next chapter we’ll get into what we consider the best structure for app development with Strange, but for now

//This works
Signal<int, int> twoIntSignal = new Signal<int, int>();
twoIntSignal.AddListener(twoIntCallback);

//This fails
Signal<int, int> twoIntSignal = new Signal<int, int>();
commandBinder.Bind(twoIntSignal).To<SomeCommand>();

override public void Launch()
{
 base.Launch();
 //Make sure you've mapped this to a StartCommand!
 StartSignal startSignal= (StartSignal)injectionBinder.GetInstance<StartSignal>();
 startSignal.Dispatch();
}

injectionBinder.Bind<ShipDestroyedSignal>().ToSingleton();

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

just humor us and consider the idea that your View should only be responsible for the following:

1. Wiring up the visual components.
2. Dispatching events when the user interacts with those components.
3. Exposing an api which allows another actor to change the visual state of those components.

By limiting yourself to those three functions, by keeping all logic or state out of your Views, by refusing to Inject
models and services, you contain the View and make your life much, much better in the long run. Trust me on
this. Please.

Now, in item ‘3’ above I mention exposing an api to another actor. Who might this actor be...?

Mediator
The Mediator class is a separate MonoBehaviour whose responsibility is to know about the View and about the
app in general. It is a thin class, which means that its responsibilities should be very, very lean. It is allowed
intimate knowledge of the View, is injectable and knows enough about the app to send and receive events or
Signals. So think back to the number on the green button. You were going to inject a service into the View to
display, say, the number of friends who are online. Well, you could inject the service into the Mediator, but since
the Mediator is meant to be thin, a better answer would be to dispatch a request, let a Command handle the
Service call, then dispatch a response. This is a lot of indirection, but the payoff for this indirection is clean,
structured code.

Here’s how this might look in a Mediator:

using Strange.extensions.mediation.impl;
using com.example.spacebattle.events;
using com.example.spacebattle.model;
namespace com.example.spacebattle.view
{
 class DashboardMediator : EventMediator
 {
 [Inject]
 public DashboardView view{get;set;}

 override public void OnRegister()
 {
 view.init();
 dispatcher.AddListener
 (ServiceEvent.FULFILL_ONLINE_PLAYERS, onPlayers);
 dispatcher.Dispatch
 (ServiceEvent.REQUEST_ONLINE_PLAYERS);
 }

 override public void OnRemove()
 {
 dispatcher.RemoveListener
 (ServiceEvent.FULFILL_ONLINE_PLAYERS, onPlayers);
 }

 private void onPlayers(IEvent evt)
 {
 IPlayers[] playerList = evt.data as IPlayers[];

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Some things to note here:

1. The injection of DashboardView is how the Mediator knows about its View.
2. OnRegister() is the method that fires immediately after injection. It’s kind of like a constructor and you can

use it to initialize the view and perform other setup processes, including — as we do here — request
important data.

3. The contextDispatcher is injected into any Mediator that extends EventMediator, so you always have access
to the context-wide event bus.

4. OnRemove() is for cleanup; it’s called just before a View is destroyed. Remember to remove any listeners
you’ve added.

5. The View in this example has exposed an api of two methods: init() and updatePlayerCount(float value). In a
real situation you’d probably expect a larger api, but the principle is the same: limit the Mediator to nothing
but the thin task of relaying information between the View and the rest of the app.

Binding a View to a Mediator should look pretty familiar by now:

A couple of other points worth noting:

1. Not any MonoBehaviour qualifies as a View. There’s a little behind-the-scenes magic going on to allow the
View to inform Strange of its existence. So either extend View, or duplicate that magic in your own code (it’s
only a few lines), or perhaps create a View of your very own which extends View and which your classes
extend. This latter pattern is useful, since you might want to insert debugging code that will later be
accessible to all your Views.

2. Mediation binding is instance-to-instance. Whenever a new View comes into the world a new Mediator is
created to support it. So lots of Views means lots of Mediators.

The context extension

The context package puts all your various Binders under one roof, so to speak. For example, the MVCSContext
includes an EventDispatcher, an InjectionBinder, a MediationBinder, and a CommandBinder. You can, as we have
discussed, remap the CommandBinder to a SignalCommandBinder. The (Signal)CommandBinder listens to the
EventDispatcher (or Signals). Commands and Mediators rely on Injection. The Context is where we wire up these
dependencies. To create a project, you'll override Context or MVCSContext and it's in this child class that you'll
write all the bindings that make your application do what it does.

It is also possible — desirable even — to have multiple Contexts. This allows your app to be highly modular. Self-
standing modules can run on their own, only interfacing with other modules as needed. Thus a core game can be
written as one app, a social media component written separately, and a chat app as a third, and all three can be
bound together late in development, each only sharing the pieces that the other components care about.

3. MVCSContext: the big picture

 view.updatePlayerCount(playerList.Length);
 }
 }
}

mediationBinder.Bind<DashboardView>().To<DashboardMediator>();

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

This section is basically a recipe for building a Strange app with MVCSContext. In the last section I described all the
parts; in this one I’ll explain how to assemble them.

So you want to write a game. You’ve got Unity humming, MonoDevelop all warmed up and a cup of coffee in your
hand (or whisky, if you're surfing the Ballmer Curve). Then someone says, “Hey, use Strange!” Now, she’s a smart
cookie; she explains all the benefits and convinces you that you want to give it a go. Where to start?

Well, in the best vonTrapp tradition, let’s start at the very beginning.

Concepts

MVCSContext is Strange’s way of wrapping up the whole micro-architecture into a convenient, easy-to-use
package. As the name suggests, it’s designed to work as an MVCS application (The ‘S’ is for Service, which refers to
anything outside your application, such as a web service).

So here again are all the parts you’ll be assembling:

1. The entry point to your app is a class called a ContextView, which is simply a MonoBehaviour that
instantiates the MVCSContext.

2. The MVCSContext (technically, a subclass of MVCSContext) is where you set up all your bindings (see Section
1, Binding).

3. The dispatcher is a communication bus, allowing you to send messages throughout your app. The
dispatcher used in MVCSContext sends objects called TmEvents. Alternatively, you can follow the steps
outlined above to re-wire the Context to use Signals.

4. Commands are classes triggered by IEvents or Signals. When a Command executes it carries out some part
of the application logic.

5. Models store state.
6. Services communicate with the world outside the application.
7. Views are MonoBehaviours attached to GameObjects: the bits of the game your player actually sees and

interacts with.
8. Mediators are also MonoBehaviours, but with the very specific function of insulating the View from the rest

of the app.

Here’s a chart showing how these pieces work together:

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Set up your project

Download the Strange repo. Inside it you’ll find a complete Unity project with examples to look at (I suggest you
go through these). Find a folder called "myfirstproject" and open the TextView.unity file within
(StrangeIoC > examples > Assets > scenes > myfirstproject > TestView.unity) .

Take note that, while I'm going to walk you through this project to get you comfy, you don't need nearly all the
stuff you've downloaded when you use Strange in your own project. Everything you really need is in:

and within that the important subdirectories are framework and extensions .

A scene is set...

When you open the scene in Unity you'll find a GameObject named “ViewGO” and a camera inside of it.
ContextView will be the top of your game hierarchy and everything else will go inside it. Although Unity does not
require you to have a singular top-level GameObject, Strange works best this way (specifically, when there is more
than one context, Strange uses the display hierarchy to determine which Context any given View belongs to).
There's also a MonoBehaviour attached called "MyFirstProjectRoot".

Play this simple app and see what it does. See what happens when you click on the rotating text. Nothing
spectacular here. We're just demonstrating structure for now.

Assets/scripts/strange

http://localhost/strangeioc/class-flow.png

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

In the Property Inspector, double-click MyFirstProjectRoot to launch MonoDevelop.

A ContextView begins...

ContextView is a MonoBehaviour that instantiates your context. MyFirstProjectRoot subclasses ContextView, and is
where our app begins.

Note how we’re “using” the strange.extensions.context.impl folder. Everything in Strange is tightly namespaced
like this, so you import only what you need.

The rest of this code is really simple. ContextView defines a property called context which of course refers to our
context. We simply need to define what it is. We’ve writen one called MyFirstContext. The reference this refers to
MyFirstProjectRoot. It tells the Context which GameObject is to be considered the ContextView. The true indicates
that once we call start, everything else will proceed. It can sometimes be useful to have the context run, but not
actually launch the app (for example, if you’re awaiting the loading of a file), but this is a more advanced use case
than we care about here.

Finally, call context.Start() to kick it into action.

The Context binds...

As I explained above, the Context is where all the binding happens. Without bindings, a Strange application is just
a pile of disconnected parts. The Context is the glue that brings order to the chaos. Since we’re extending
MVCSContext, we get a whole bunch of binding goodness for free without any work. MVCSContext is designed to
give us everything we need to cleanly structure an IoC-style application: an Injector, a message bus, Command
patterns, model and service support, and View mediation. Here’s the code for our simple Context.

using System;
using UnityEngine;
using strange.extensions.context.impl;

namespace strange.examples.myfirstproject
{
 public class MyFirstProjectRoot : ContextView
 {
 void Awake()
 {
 context = new MyFirstContext(this, true);
 context.Start ();
 }
 }
}

using System;
using UnityEngine;
using strange.extensions.context.api;
using strange.extensions.context.impl;
using strange.extensions.dispatcher.eventdispatcher.api;
using strange.extensions.dispatcher.eventdispatcher.impl;

namespace strange.examples.myfirstproject

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

As you see we’re extending MVCSContext, which means we inherit all its mappings (you might find it interesting to
explore that class in depth). So we already have things like an injectionBinder and a commandBinder and a
dispatcher. Note that the dispatcher is accessible all across the app, and is coupled to the commandBinder, so any
event dispatched can trigger callbacks and also trigger commands and sequences.

The mappings here are just what you’d expect if you’ve read about the various components. For injection, we’re
mapping one model and one service, both as Singletons. We’re going to have just one view (ExampleView) for this
example, and we bind it to a Mediator (ExampleMediator). Finally, we’re mapping two commands. The more
important of the two is StartCommand. It’s bound to a special event: ContextEvent.START. This is the event fired
to kick off your app. You should bind some command (or sequence) to it and think of that command as being like
an init() for your entire app. Also see that we’ve bound it with .Once() , which a special method that Unbinds the
event after a single firing.

Note that there's also a postBindings() method. This is a useful place to put other code you need to run after
binding, but before Launch() . MVCSContext uses this to process any Views which register early (before
mapBindings() is called). Another obvious and useful case for this is to call DontDestroyOnLoad(contextView)

inside postBindings() , in order to retain the contextView (and the Context!) when you load in a new scene.

A Command fires...

{
 public class MyFirstContext : MVCSContext
 {

 public MyFirstContext () : base()
 {
 }

 public MyFirstContext (MonoBehaviour view, bool autoStartup) : base(view, autoStartup)
 {
 }

 protected override void mapBindings()
 {
 injectionBinder.Bind<IExampleModel>()
 .To<ExampleModel>()
 .ToSingleton();
 injectionBinder.Bind<IExampleService>()
 .To<ExampleService>()
 .ToSingleton();

 mediationBinder.Bind<ExampleView>()
 .To<ExampleMediator>();

 commandBinder.Bind(ExampleEvent.REQUEST_WEB_SERVICE)
 .To<CallWebServiceCommand>();
 commandBinder.Bind(ContextEvent.START)
 .To<StartCommand>().Once ();

 }
 }
}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

So ContextEvent.START fires, and because it’s bound to StartCommand, a new instance of StartCommand will be
instantiated and executed.

StartCommand extends EventCommand which means that (a) it’s a legal Command that the commandBinder can
work with and (b) it inherits everything from Command and from EventCommand. In particular, extending
EventCommand means that you get an IEvent injected and you get access to the dispatcher.

If you just extended Command, you wouldn’t have automatic access to those objects, but you could still inject
them manually by adding this:

Note the two different types of injection being used here. IEventDispatcher and GameObject are both using
named instances. That’s because we want to refer to very specific versions of these objects. We don’t want just
any GameObject, we want the one marked as ContextView. Nor do will we settle for any old IEventDispatcher. The
only one that will serve to communicate around the Context is the one marked by
ContextKeys.CONTEXT_DISPATCHER. The IEvent, on the other hand, is simply mapped for the consumption of this
particular command (technically it’s mapped to a “value”). So no name is required.

The dependency we’ll use in the current scenario is the ContextView. We’ll add a child view to it.

The Execute() method is automatically fired by the commandBinder. In most situations, the order of execution

using System;
using UnityEngine;
using strange.extensions.context.api;
using strange.extensions.command.impl;
using strange.extensions.dispatcher.eventdispatcher.impl;

namespace strange.examples.myfirstproject
{
 public class StartCommand : EventCommand
 {
 [Inject(ContextKeys.CONTEXT_VIEW)]
 public GameObject contextView{get;set;}

 public override void Execute()
 {
 GameObject go = new GameObject();
 go.name = "ExampleView";
 go.AddComponent<ExampleView>();
 go.transform.parent = contextView.transform;
 }
 }
}

[Inject(ContextKeys.CONTEXT_DISPATCHER)]
IEventDispatcher dispatcher{get;set;}

[Inject]
IEvent evt{get;set;}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

looks like this

1. Instantiate the Command(s) bound to the IEvent.type.
2. Inject the dependencies, including the IEvent itself.
3. Call Execute()
4. Delete the Command

The Command doesn’t have to be cleaned up immediately, but we’ll get to that in a bit. If you look at the code
inside the Execute() method, you’ll see that it’s pure Unity. Create a GameObject, attach a MonoBehaviour to it,
then parent that GameObject to ContextView. The specific MonoBehaviour we’re using, however, happens to be a
Strange IView. And since we mapped that view in our context...

...the view is automatically mediated, which means a new ExampleMediator has just been created!

A View is mediated...

If you’ve spent more than a few minutes coding for Unity, you’ve created a View. You’d call it a MonoBehaviour,
but the point is that a View is anything you see or interact with. I’m not going to spend any time walking through
the ExampleView code. You can look in the example files and if you already know C# and Unity you won’t need it
explained. I only want to draw your attention to two bits. First:

By extending View, you get the code that connects each View to the Context. To use Strange, you either need to
extend View or write this functionality yourself. But if you don’t extend View, you still need to implement the IView
interface. This is required to ensure that the Context can operate on your MonoBehaviour. (I might look for ways
to fix this in a future version, allowing you to map a Mediator onto any MonoBehaviour).

The second item to point out:

Note that we’re injecting IEventDispatcher. But this is NOT the same dispatcher as the one in StartCommand. Look
closely at the code. The one in written in EventCommand (which I showed above) looks like this:

By naming the injection, the command specifies that it’s using the common context dispatcher. The View should
never inject that dispatcher. The whole point of mediation is to insulate your view from the app and vice-versa.

mediationBinder.Bind<ExampleView>().To<ExampleMediator>();

public class ExampleView : View

[Inject]
public IEventDispatcher dispatcher{get; set;}

[Inject(ContextKeys.CONTEXT_DISPATCHER)]
public IEventDispatcher dispatcher{get; set;}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Strange allows injection into the View, but that capability is best when it’s tightly confined. Injecting a local
dispatcher for communication with the Mediator is fine. So is injecting a config/layout file (which is useful if you’re
publishing to multiple platforms). But if you listen to my advice at all, never inject a model or service or anything
else that extends outside the pool of the View and its Mediator.

I’ll tell you right now: this is the hardest concept of this entire framework for most developers to grasp. A View
should solely be about display and input. The View should inform the Mediator when certain inputs have
occurred. The Mediator (which is allowed to inject the context dispatcher) abstracts the bit of View that is
concerned with communicating with the rest of your app. This protects the app from view code — which is often
chaotic — and protects your views when the reverse situation is the case.

So don’t say I never did nuthin’ for ya.

Finally in regard to views, note that the base View class uses standard MonoBehaviour handlers Awake() ,
Start() , and OnDestroy() . So if you override those handlers, make sure you call base.Awake() , etc so that the

Strange bits run properly.

Now let’s look at the Mediator.

using System;
using UnityEngine;
using strange.extensions.dispatcher.eventdispatcher.api;
using strange.extensions.mediation.impl;

namespace strange.examples.myfirstproject
{
 public class ExampleMediator : EventMediator
 {
 [Inject]
 public ExampleView view{ get; set;}

 public override void OnRegister()
 {
 view.dispatcher.AddListener
 (ExampleView.CLICK_EVENT, onViewClicked);
 dispatcher.AddListener
 (ExampleEvent.SCORE_CHANGE, onScoreChange);
 view.init ();
 }

 public override void OnRemove()
 {
 view.dispatcher.RemoveListener
 (ExampleView.CLICK_EVENT, onViewClicked);
 dispatcher.RemoveListener
 (ExampleEvent.SCORE_CHANGE, onScoreChange);
 Debug.Log("Mediator OnRemove");
 }

 private void onViewClicked()
 {
 Debug.Log("View click detected");
 dispatcher.Dispatch(ExampleEvent.REQUEST_WEB_SERVICE,

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

At the top, see where we’ve injected the ExampleView. This is how the Mediator knows about the View it’s
mediating. Mediators are allowed to know quite a lot about their View. (The Mediator is often considered “throw-
away code”, because it’s highly particular to the specifics of both the View and the App). Certainly this Mediator is
allowed to know that the View has a dispatcher and that this dispatcher has an event called
ExampleView.CLICK_EVENT. By listening to this event, the Mediator sets up a handler (onViewClicked()) which
tells the rest of the app what this click means.

I emphasized those last words to once again clarify my earlier point: the View should not be sending the event
REQUEST_WEB_SERVICE. The View is just a View. It should dispatch events like: HELP_BUTTON_CLICKED,
COLLISION, SWIPE_RIGHT. It would be the job of the Mediator to map those events to ones meaningful to the rest
of the app, such as REQUEST_HELP, MISSILE_ENEMY_COLLISION, PLAYER_RELOAD. The latter events are mapped
to Commands and it’s these Commands which will call the help system, calculate a score increase (adding it to a
score model) or determine if the player is allowed to reload.

The OnRegister() and OnRemove() methods are like constructors and deconstructors for the mediator.
OnRegister() occurs right after injection, so I usually use it to set up listeners and call an init() function on the

View. OnRemove() occurs as a result of the MonoBehaviour OnDestroy() call. It fires in time for you to clean up.
Make sure you remove all your listeners or the Mediator may not be properly garbage collected.

Finally note that by extending EventMediator we have access to the common dispatcher. The Mediator listens for
the SCORE_CHANGE event off the common bus, which we’ll come to in a moment. And when the View issues a
click, the Mediator dispatches REQUEST_WEB_SERVICE to that same bus. Which brings us to...

Another Command fires...

Looking way back at the Context, there was this line which we sort of glossed over:

This means that whenever the common bus receives this event, it’ll launch the CallWebServiceCommand. Now,
we’re not going to actually call a web service, since this isn’t that kind of tutorial, but it draws your attention to a
slightly different way of using Commands.

 "http://www.thirdmotion.com/");
 }

 private void onScoreChange(IEvent evt)
 {
 string score = (string)evt.data;
 view.updateScore(score);
 }
 }
}

commandBinder.Bind(ExampleEvent.REQUEST_WEB_SERVICE).To<CallWebServiceCommand>();

using System;
using System.Collections;
using UnityEngine;
using strange.extensions.context.api;

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

So by now, most of this should be intelligible to you. We’re injecting the ExampleModel and ExampleService into
this command. We listen to the service, and call a method on it. We're using the data payload of the event fired
by the mediator (the url). When the service finishes (which could be instantly or in 5ms or in 30 seconds!) it
dispatches, triggering onComplete() . We unmap the listener, set a value on the model, then dispatch a
SCORE_CHANGE which is received by the mediator.

This is all great, but if you’ve been paying close attention you’ll recall that I mentioned before that Commands are
immediately cleaned up after Execute() complete. So why isn’t this Command garbage collected? The answer is
the Retain() method called at the top of the Command. Retain() marks this Command as exempt from
cleanup. It will be held onto until Release() is called. Obviously, this means that calling Release() is very
important, or you run the risk of a memory leak.

And we’re served...

You can look at ExampleModel and ExampleService to see how they work, but they’re really simple. Models are
just places to store data, and Services are involved in calling out to the Web (or elsewhere). They really have only
one rule, but it’s simple.

DON’T ALLOW MODELS AND SERVICES TO LISTEN FOR EVENTS.

using strange.extensions.command.impl;
using strange.extensions.dispatcher.eventdispatcher.api;

namespace strange.examples.myfirstproject
{
 public class CallWebServiceCommand : EventCommand
 {
 [Inject]
 public IExampleModel model{get;set;}

 [Inject]
 public IExampleService service{get;set;}

 public override void Execute()
 {
 Retain ();
 service.dispatcher.AddListener
 (ExampleEvent.FULFILL_SERVICE_REQUEST, onComplete);
 string url = evt.data as string
 service.Request(url);
 }

 private void onComplete(IEvent result)
 {
 service.dispatcher.RemoveListener
 (ExampleEvent.FULFILL_SERVICE_REQUEST, onComplete);
 model.data = result.data as string;
 dispatcher.Dispatch(ExampleEvent.SCORE_CHANGE, evt.data);
 Release ();
 }
 }
}

StrangeIoC - The Big, Strange How-To

http://localhost/strangeioc/TheBigStrangeHowTo.html[3/22/15, 1:40:13 AM]

Let me repeat that. No, nevermind, it’s bold and in caps so you probably heard me. Models and Services are used
by Commands, they’re not part of the communication chain, nor should they be used in that way. I can’t
emphasize strongly enough that you don’t want to do this.

You can certainly inject into them, and there’s nothing the matter with injecting a local dispatcher (as we do here)
and allowing it to talk back to your Commands. There’s also nothing wrong with injecting the context dispatcher
and dispatching events. But...

DON’T ALLOW MODELS AND SERVICES TO LISTEN FOR EVENTS.

Oh, did I say that again? So sorry.

Mapping Across Contexts

Generally speaking, you want to abide by the Context boundary. After all, the boundary is there for a reason: it
allows parts of your app to function in isolation, increasing modularity. But there are times when some
object...perhaps a model, a service or a Signal...needs to be accessible across more than one Context. In v.0.6.0 of
Strange we added a mechanism to make this easier, and easy it is:

Adding CrossContext() signals that the binding should be instantiated across the Context boundary. It will be
available to all child Contexts. Note that you can also override a CrossContext binding. If you map the key locally,
the local binding will override the CrossContext one.

4. Conclusion
That wraps up the Big, Strange How-To. You now know a lot about how Strange works and what it can do to
make your world a better place. I suggest you try out the multiplecontexts example since that’ll open you up to
more possibilities. I also suggest you build something with Strange, since there’s nothing like making for learning.
If you’ve never used an IoC framework before, I guarantee it will improve your approach to coding. If you have, I
hope it lives up to the experience you’ve had so far.

Finally, Strange was written to be extended. An endless number of Binders can be made to allow anything to
trigger anything else. As others turn their minds to this way of thinking, I hope we’ll see loads of amazing (and
Strange) add-ons.

After all, doesn’t everyone love a Strange world?

injectionBinder.Bind<IStarship>().To<HeartOfGold>().ToSingleton().CrossContext();

	localhost
	StrangeIoC - The Big, Strange How-To

